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• The classification of tumors as inflamed, excluded or desert based on 

spatial patterns of tumor infiltrating lymphocytes (TILs)1 is a potential 

biomarker of patients likely to respond to checkpoint inhibitors (CPI)2. 

However, the subjectivity of manual methods to assess these immune 

phenotypes (IPs) and poor standardization in the methods and 

thresholds to define IPs have hampered their clinical adoption3,4. 

• Here, we describe a data-driven approach to inform IP threshold 

selection based on predicted lymphocyte densities in patches of 

hematoxylin and eosin (H&E)-stained whole slide images (WSI) by 

maximizing differences in overall survival (OS) between IPs.
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Datasets

• H&E-stained WSI (N=4,082) from multiple datasets from the cancer 

genome atlas (TCGA; COAD, READ, SKCM, PRAD, ESCA, STAD, PAAD, 

BRCA, KICH, KIRC, KIRP, LUAD, LUSC)5 were used to determine 

thresholds for IPs. 

• Two cohorts of patients with NSCLC were used to assess the clinical 

implications of IPs predicted by our approach: 1)  TCGA cohort, 

consisting of LUAD (N=459) and LUSC (N=424) and 2) a clinical cohort 

consisting of PD-(L)1 inhibitor-treated NSCLC patients (N=95) enrolled 

in the BIP precision medicine study (NCT02534649; Institut Bergonié, 

Bordeaux, France).

Immune phenotype prediction

• A model to classify the IPs of NSCLC samples from H&E images was 

developed using PathExplore6 models as described in Fig. 1. 

• Lymphocyte densities were extracted for 0.01 mm2 patches tiled 

across WSI. Cut-offs to define cancer epithelium and cancer stroma 

patches as hot or cold were defined based on the 75th and 50th 

percentiles, respectively, of lymphocyte densities in cancer epithelium 

and cancer stroma (Fig. 2A,B). 

• Hierarchical fitting yielded optimal thresholds in cancer epithelium and 

cancer stroma (Fig. 2C) that minimize p-values of OS differences 

between IPs. 

Figure 2. Threshold identification for distinguishing hot and cold patches. 

Key Results:

• In the TCGA NSCLC cohort, model-predicted iIP and eIP patients had significantly better OS compared to dIP (HR=0.53, p=0.003 and HR=0.59, p=0.003, respectively; Fig. 4A). In the clinical 

cohort, PFS was significantly shorter in model-predicted eIP patients compared to iIP (HR=0.54, p=0.045; Fig. 4B). 

• Lymphocyte density in cancer epithelium and fraction of hot cancer epithelial patches were significantly associated with PFS (HR=0.64, q=0.04 and HR=0.69, q=0.04, respectively; Table 2). 

• Notably, in PD-L1 (-) patients (N=43, TPS ≤1%), iIP patients (orange line) had longer PFS than eIP and dIP patients (blue line; HR=0.35, p=0.02; Fig. 6B, C). No difference in PFS was observed 

for PD-L1 (+) patients (N=43, TPS >1%).

Figure 3. Distribution of TME-related features and immune phenotypes in NSCLC cohorts. 

Figure 4. Association of immune phenotype with PFS and OS. 

• We developed a data-driven approach for 

predicting IPs using patch-level lymphocyte 

densities in cancer epithelium and cancer 

stroma derived from H&E-stained samples. 

• Model-predicted IPs associate with OS in the 

TCGA NSCLC dataset and with PFS in a CPI- 

treated clinical NSCLC cohort. Association of 

IP and PFS was independent of PD-L1 status, 

potentially allowing the identification of PD-

L1(-) patients who may derive greater benefit 

from CPI.

In the TCGA and clinical cohorts, lymphocyte density was extracted after PathExplore deployment in the cancer epithelium (A) 

and cancer stroma (B).  C) IPs were predicted based on patch-level thresholds of hot patches in cancer and stroma in the 

TCGA and clinical cohorts.

Exploratory Analyses

• Model-predicted IPs were compared to progression-free survival (PFS) 

and overall survival (OS) in both the TCGA and clinical cohorts. False 

discovery rate (FDR) correction was done with Benjamini-Hochberg.

• Survival was also assessed in the clinical cohort using PD-L1 tumor 

proportion score (TPS), iIP status, and TIL density as covariates.

Selected lymphocyte density thresholds in (A) cancer epithelium (75th 

percentile across all sampled patches from all indications) and (B) cancer 

stroma (50th percentile across all sampled patches from all indications) 

for distinguishing hot and cold patches. C) Thresholds (dashed lines) were 

selected to minimize the p-values of OS differences between IPs.

Feature p q HR (95% CI)

Number of lymphocytes relative to all predicted cells in cancer 

epithelium
0.005 0.04 0.64 (0.46,  0.87)

Density of lymphocytes in cancer epithelium 0.006 0.04 0.64 (0.46,  0.88)

Percentage of “hot” patches in cancer epithelium 0.007 0.04 0.69 (0.53,  0.90)

Table 2. PFS regression results with covariates in clinical 

cohort. Features retaining significance after FDR 

correction are shown.

Covariate

PFS

p HR (95% CI)

Inclusion of lymphocyte 

density in cancer epithelium 

as covariate

PD-L1 Low 0.002 2.42 (1.38, 4.23)

High TIL Density 0.06 0.62 (0.37, 1.03)

Prior treatment 0.53 0.93 (0.74, 1.17)

Histology 0.83 0.95 (0.57, 1.59)

Age 0.91 1.00 (0.97, 1.02)

Inclusion of iIP prediction as 

covariate

PD-L1 Low 0.002 2.38 (1.36, 4.16)

iIP prediction 0.04 0.55 (0.32, 0.97)

Prior treatment 0.49 0.92 (0.74, 1.16)

Histology 0.64 0.88 (0.52, 1.49)

Age 0.92 1.00 (0.98, 1.03)

Model Predicted IP Criteria

Inflamed (iIP) >40% hot patches in cancer epithelium

Excluded (eIP) ≤40% hot patches in cancer epithelium; >45% hot patches in cancer stroma

Desert (dIP) ≤40% hot patches in cancer epithelium; ≤45% hot patches in cancer stroma

Table 1. Thresholds chosen for IP prediction in NSCLC. 

Cox regression using predicted IPs was used to predict PFS and OS in A) the TCGA cohort and B) the clinical cohort, the latter 

of which consisted exclusively of CPI-treated patients.

Figure 6. Immune inflamed phenotype associates with 

improved PFS in CPI-treated NSCLC patients independent of 

PD-L1 status.

Multivariable Cox regression using A) lymphocyte density  

binarized at the median cutoff or B) IP predictions as 

covariates was used to predict PFS in the clinical cohort.  

Lymphocyte density was binarized at the median value, while 

iIP patients were compared to non-inflamed (eIP and dIP). iIP-

inflamed status significantly correlates with better PFS 

(p=0.04). High lymphocyte density also correlates with better 

PFS but the effect does not reach statistical significance 

(p=0.06). C) Association between covariates and survival. 

Similar trends were observed for OS (data not shown).
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Figure 1. TIL spatial heterogeneity-based immunophenotyping. 

Figure 5. Association of immune phenotype with PD-L1 TPS 

in the clinical cohort.
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Most patients predicted to be non-

inflamed (dIP or eIP) show low PD-L1 

levels (0-1% TPS). While most patients 

predicted to be iIP show high PD-L1 

TPS (>1%), many still have low PD-L1 

levels (0-1%).
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